Jan 29, 2019

Novel growth and properties of GaAs nanowires on Si substrates

Straight, vertically aligned GaAs nanowires were grown on Si(111) substrates coated with thin GaAs buffer layers. We find that the V/III precursor ratio and growth temperature are crucial factors influencing the morphology and quality of buffer layers. A double layer structure, consisting of a thin initial layer grown at low V/III ratio and low temperature followed by a layer grown at high V/III ratio and high temperature, is crucial for achieving straight, vertically aligned GaAs nanowires on Si(111) substrates. An in situ annealing step at high temperature after buffer layer growth improves the surface and structural properties of the buffer layer, which further improves the morphology of the GaAs nanowire growth. Through such optimizations we show that vertically aligned GaAs nanowires can be fabricated on Si(111) substrates and achieve the same structural and optical properties as GaAs nanowires grown directly on GaAs B substrates.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Jan 21, 2019

The contact and photoconductivity characteristics between Co doped amorphous carbon and GaAs: n-type low-resistivity and semi-insulated high-resistivity GaAs


The Co doped amorphous carbon films (a-C:Co), deposited by pulsed laser deposition, show p-n and ohmic contact characteristics with n-type low resistivity GaAs (L-GaAs) and semi-insulated high-resistivity GaAs (S-GaAs). The photosensitivity enhances for a-C:Co/L-GaAs, while inverse decreases for a-C:Co/S-GaAs heterojunction, respectively. Furthermore, the enhanced photosensitivity for the a-C:Co/L-GaAs/Ag heterojunction also shows deposition temperature dependence behavior, and the optimum deposition temperature is around 500 °C.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Jan 14, 2019

A comparison between contactless electroreflectance and photoreflectance spectra from n-doped GaAs on a semi-insulating GaAs substrate


Contactless electroreflectance (CER) and photoreflectance (PR) measurements have been performed on samples with the structure of an n-doped GaAs epitaxial layer on a semi-insulating GaAs substrate. Modulated reflectance signals from the n-GaAs surface and those from the n-GaAs/SI-GaAs interface are superposed in PR spectra. For the case of CER measurement, however, Franz–Keldysh oscillations (FKOs) from the interface, which are observed in PR spectra, cannot be detected. This discrepancy is attributed to different modulation mechanisms of CER and PR. In CER experiments, the electric field modulation cannot be added to the interfacial electric field because of the effective screening by the fast response of carriers across the interface. FKOs from the interface without any perturbation by the surface signals are extracted by subtracting CER spectra from PR spectra.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Jan 9, 2019

Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and Si substrates

We have improved the efficiency of photoconductive antennas (PCAs) using low-temperature-grown GaAs (LT-GaAs). We found that the physical properties of LT-GaAs photoconductive layers greatly affect the generation and detection characteristics of terahertz (THz) waves. In THz generation, high photoexcited carrier mobility and the presence of a few As clusters in the LT-GaAs are two important factors. In detection, short carrier lifetime and the absence of a polycrystalline structure in the LT-GaAs are significant factors. By optimizing these physical properties, we improved the total dynamic range of THz generation and detection by 15 dB over that obtained by conventional commercially available PCAs. In addition, we replaced the semi-insulating GaAs (SI-GaAs) substrate with a Si substrate, which has a low absorption in the THz region. We proposed a new idea of including a highly insulating Al0.5Ga0.5As buffer layer on the Si substrate. Finally, we confirmed the feasibility of manufacturing PCAs using Si substrates.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,