Quasi-phase-matched (QPM) GaP layers up to 300 μm thick have been produced by low-pressure hydride vapor phase epitaxy (LP-HVPE) overgrowth on orientation-patterned GaAs (OPGaAs) templates fabricated using a wafer-fusion bonding technique. The growth on the OPGaAs templates resulted in up to 200 μm thick vertically propagating domains, with a total GaP thickness of 300 μm. The successful thick growth on OPGaAs templates is the first step towards solving the material problems associated with unreliable material quality of commercially available GaP wafers and making the whole process of designing QPM frequency conversion devices molecular beam epitaxy free and more cost-effective.